Synthesis and P-388 Antitumor Properties of the Four Diastereomeric 1-Hydroxy-3,4-diaminocyclohexane- $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}$ Complexes ${ }^{1}$

Donald T. Witiak, ${ }^{,{ }^{\dagger}}{ }^{\dagger}$ David P. Rotella, ${ }^{\dagger}$ Yong Wei, ${ }^{\dagger}$ Joyce A. Filppi, ${ }^{\ddagger}$ and Judith C. Gallucci ${ }^{\S}$
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, and Adria Laboratories, Columbus, Ohio 43216. Received April 18, 1988

Abstract

Synthesis and antileukemic activity in vivo of the four diastereomeric 1-hydroxy-3,4-diaminocyclohexane- $\mathrm{Cl}_{2} \mathrm{Pt}^{11}$ complexes ($\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathrm{a}-\mathrm{d}$) are described. Respective bis(phenylmethyl) ($1 \alpha, 2 \alpha, 4 \beta$)-, ($1 \alpha, 2 \alpha, 4 \alpha$)-, ($1 \alpha, 2 \beta, 4 \beta$)-, and ($1 \alpha, 2 \beta, 4 \alpha$)-(4-hydroxy-1,2-cyclohexanediyl)bis(carbamates) ($\mathbf{5 a}, \mathbf{5 b}, 7 \mathbf{a}, 7 \mathbf{b}$) were prepared by hydroboration-oxidation of the bis(carbobenzoxyamino) derivatives (4,5) of cis- and trans-4,5-diaminocyclohexene. The relative stereochemistry of intermediates $\mathbf{5 a}$ and $\mathbf{5 b}$ was established by correlation with the alcohol obtained by NaBH_{4} reduction of bis(phenylmethyl) ($1 \alpha, 2 \alpha, 3 \alpha, 4 \alpha$)-(3,4 -epoxy-1,2-cyclohexanediyl)bis(carbamate) (8), the all-cis stereochemistry of which was unambiguously determined by X-ray crystallographic analysis. In the P-388 murine leukemia model these monohydroxycyclohexanediamine- Pt^{11} complexes were more effective than the $\mathrm{Pt}^{\mathrm{II}}$ complexes of the related diol diamines la-e but were less active than the cisplatin positive control.

A previous report ${ }^{2}$ from these laboratories detailed stereocontrolled syntheses and antineoplastic activity in a P-388 tumor model of the diastereomeric 1,2 -di-hydroxy-4,5-diaminocyclohexane- $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}$ complexes of la-e. These compounds were among the first organoplatinum agents designed to explore the utility of hy-droxyl-substituted diaminocyclohexane- $\mathrm{Pt}^{\text {II }}$ complexes ${ }^{3}$ in an effort to improve upon the physical and biological properties of the prototypical compound in this series, 1,2-diaminocyclohexane (DACH)- $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}(\mathbf{2}) .{ }^{4,5}$

Most of these diol diamine complexes as well as their acetate esters proved to be water insoluble and consequently (likely owing to poor diffusion ${ }^{2}$) displayed only modest antineoplastic activity in the P-388 system. An analysis of the unit cell packing of $1 \mathbf{b}$ indicated a very tight and extensive network of both intra- and intermolecular hydrogen bonding involving water. Possibly this factor was the primary cause of the limited aqueous solubility of these species. $\mathrm{Pt}^{\text {II }}$ complexes of monohydroxy derivatives $3 \mathbf{a}-\mathbf{d}$ were constructed to further assess hydroxyl group substitution on attenuation of physical and biological properties of organoplatinum drugs.

1 (undesignated letters $=\mathrm{H}$)
a: $\mathrm{B}=\mathrm{D}=\mathrm{OH}: \mathrm{E}=\mathrm{G}=\mathrm{NH}_{2}$ b: $A=C=O H: E=G=\mathrm{NH}_{2}$ c. $\mathrm{B}=\mathrm{C}=\mathrm{OH}: \mathrm{E}=\mathrm{G}=\mathrm{NH}_{2}$ d: $B=D=O H: F=G=\mathrm{NH}_{2}$ e: $\mathrm{B}=\mathrm{C}=\mathrm{OH}: F=\mathrm{G}=\mathrm{NH}_{2}$

3 (undesignated letters) $=\mathrm{H}$)
a: $\mathrm{A}=\mathrm{OH}: \mathrm{C}=\mathrm{E}=\mathrm{NH}_{2}$ b: $\mathrm{B}=\mathrm{OH}: \mathrm{C}=\mathrm{E}=\mathrm{NH}_{2}$ c: $A=O H: E=D=\mathrm{NH}_{2}$ $d: B=O H: E=D=N H_{2}$

Chemistry

The respective bis(carbobenzoxyamino)cyclohexanols $\mathbf{5 a}, \mathbf{b}$ and $7 \mathbf{a}, \mathbf{b}$, which served as stable sources of the easily air-oxidizable free diamines, were conveniently prepared in 91 and 78% yields, respectively, from the corresponding alkenes ${ }^{2}$ cis-4 and trans-6 by hydroboration with excess

[^0]
Scheme \mathbf{I}^{a}

${ }^{a} \mathrm{a}=\mathrm{MCPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature; ${ }^{2} \mathrm{~b}=\mathrm{NaBH}_{4}$, t. $\mathrm{BuOH}-\mathrm{MeOH}$, reflux.
$\mathrm{B}_{2} \mathrm{H}_{6}$ followed by alkaline peroxide oxidation (Scheme I) and separation by flash chromatography. By this procedure trans- 6 afforded $7 \mathbf{a}, \mathbf{b}$ in a ratio of 1.4:1.0. The modest level of stereocontrol observed during conversion of cis-4
(1) A preliminary account of this work was presented to the Division of Medicinal Chemistry, 191st National Meeting of the American Chemical Society, New York, NY. Rotella, D. P.; Witiak, D. T.; MEDI-65, 1986. This article was abstracted in part from a Ph.D. dissertation (1985) presented by D.P.R. to the Ohio State University. Present address for D.P.R. is Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677 .
(2) Witiak, D. T.; Rotella, D. P.; Filppi, J. A.; Gallucci, J. C. J. Med. Chem. 1987, 30, 1327-1336.
(3) For other examples, see: Tsubomura, T.; Yano, S.; Kobayashi, K.; Sakurai, T.; Yoshikawa, S. J. Chem. Soc., Chem. Commun. 1986, 459-460. Noji, M.; Chisaki, K.; Hirose, J.; Kato, T.; Kidani, Y. Chem. Pharm. Bull. 1986, 34, 2321-2329.
(4) Connors, T. A.; Jones, M.; Ross, W. C. J.; Braddock, P. D.; Khokhar, A. R.; Tobe, M. L. Chem. Biol. Interact. 1972, 5, 415-424.
(5) Cleare, M. J.; Hydes, P. C.; Hepburn, D. R.; Malerbi, B. W. In Cisplatin: Current Status and New Developments; Prestyako, A. W., Crooke, S. J., Carter, S. K., Eds.; Academic: New York, 1980; pp 149-170.

Figure 1. The ortep drawing for oxirane 8 was generated with 50% probability thermal ellipsoids for the non-hydrogen atoms. The hydrogen atoms are drawn with an artificial radius.

Scheme III ${ }^{a}$

${ }^{a} \mathrm{a}=$ Jones reagent, $\mathrm{Me}_{2} \mathrm{CO} ; \mathrm{b}=\mathrm{NaBH}_{4}, \mathrm{EtOH},-20^{\circ} \mathrm{C} ; \mathrm{c}=$ K-Selectride, THF, $-78^{\circ} \mathrm{C}$.
to 5a,b (3:1, respectively) could not be significantly improved by use of the sterically more demanding reagent disiamylborane.
NMR (500 MHz) analysis of cyclohexanols $\mathbf{5 a}, \mathbf{b}$ was not useful for making diastereomeric assignments since in a variety of solvents $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{2} \mathrm{CO}-d_{6}\right.$, or $\left.\mathrm{DMSO}-d_{6}\right)$ the H-1 and H-4 proton resonance signals were observed as complex overlapping multiplets. However, oxirane 8, ${ }^{2}$ produced free of isomeric products in 86% yield by peracid oxidation of cyclohexene 4 , underwent stereospecific reduction ${ }^{6}$ affording cyclohexanol 5 b in 72% yield (Scheme II). The syn relationship of the oxirane ring to the cisbis(CbzNH) functions in 8 was established by X-ray crystallographic analysis (Figure 1), and trans diaxial hydride ring cleavage was expected to produce the all-cis diastereomer $\mathbf{5 b}$, which was identical in all respects with the minor diastereomer obtained by the action of diborane on 4. Delivery of the oxygen atom in 8 syn to the protected amino groups clearly implicates a Henbest-type of stereoelectronic participation ${ }^{7,8}$ by the pseudoaxial carbamate function in 4 during epoxidation. In the absence of stereoelectronic participation, anti delivery of oxygen owing only to steric considerations would be anticipated. ${ }^{9}$

The relative stereochemical assignments for the epimeric trans diamino alcohols 7a,b were supported by analysis of their respective $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra in CDCl_{3} so-

[^1]Table I. Comparative Evaluation of Pt^{11} Complexes in P-388-Infected CDF $_{1}$ Mice a

compound	dose, mg/kg	MST	\% T/ ${ }^{\text {b }}$
cisplatin	6	24.5	249
	3	18.5	188
	1.5	15.5	158
$\mathrm{Cl}_{2} \mathrm{Pt}^{11}-3 \mathrm{a}$	80	4.2	42
	40	8.5	86
	20	16.5	168
	10	15.2	154
$\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{Hl}-3 \mathrm{~b}}$	80	13.5	137
	40	18.0	183
	20	15.0	153
	10	13.8	141
$\mathrm{Cl}_{2} \mathrm{Pt}^{11}-3 \mathrm{c}$	80	2.2	22
	40	3.2	32
	20	3.3	34
	10	15.8	161
$\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{ll}}-3 \mathrm{~d}$	80	2.2	22
	40	5.0	51
	20	14.5	147
	10	16.5	168

${ }^{a}$ P-388 tumor cells (1×10^{6} cells/animal) were implanted into the peritoneal cavity of CDF_{1} recipient, test mice. Drug was reconstituted in 0.3% Klucel and injected on a day 1 ip schedule. Animals were observed daily for at least 30 days and survival times were calculated as a percent treated/control (T / C). $\% \mathrm{~T} / \mathrm{C}=$ median survival time in days (MST) of treated groups divided by MST of negative control groups $\times 100 .{ }^{b}$ Toxic $\% \mathrm{~T} / \mathrm{C} \leq 85$, active $\% \mathrm{~T} / \mathrm{C} \geq 120$.
lution. Thus, the axial hydrogen α to the hydroxyl group in 7a was observed as a multiplet centered at $\delta 3.72$ whereas the corresponding equatorial proton resonance signal multiplet in $\mathbf{7 b}$ was observed further downfield (δ 4.16). Additionally, reduction of ketone 9 , prepared by oxidation of the $7 \mathbf{a}, \mathbf{b}$ mixture, with the stereochemically complimentary ${ }^{10}$ hydride reagents K-Selectride and sodium borohydride (Scheme III) confirmed these assignments. Treatment of 9 with NaBH_{4} in EtOH at $-20^{\circ} \mathrm{C}$ gave a carbinol mixture ($8: 1$) with 7 a predominating, but reaction of 9 with K-Selectride in THF at $-78^{\circ} \mathrm{C}$ furnished almost exclusively the epimeric axial cyclohexanol $\mathbf{7 b}$.

Platination $\left(\mathrm{K}_{2} \mathrm{PtCl}_{4}, \mathrm{H}_{2} \mathrm{O}\right)^{4}$ of diamino alcohols $3 \mathbf{a}-\mathrm{d}$ following catalytic hydrogenolysis ($10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$) of the respective urethane derivatives ($\mathbf{5 a}, \mathbf{b}, 7 \mathbf{a}, \mathbf{b}$) afforded $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathrm{a}(37 \%), \mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathrm{~b}(37 \%), \mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathbf{c} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (65%), and $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathrm{~d} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}(49 \%)$ isolated as sparingly water-soluble yellow crystals. Trans, but not cis, diamino complexes formed hydrates.

Biological Results and Discussion

Antineoplastic evaluation (Table I) of complexes $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}$-3a-d in the $\mathrm{P}-388$ murine leukemia model was carried out as previously described ${ }^{2}$ with cisplatin as a positive control. At $10 \mathrm{mg} / \mathrm{kg} \mathrm{Pt}{ }^{\text {II }}$ complexes of all four diastereomers were active exhibiting percent T / C values of 141-168, but none of the experimental drugs were more efficacious than cisplatin. At higher concentrations (40-80 $\mathrm{mg} / \mathrm{kg}$) only $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathbf{b}$ was not toxic to the host animal. Previously we observed ${ }^{2} \mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}$ complexes of cyclohexanediol trans diamines $1 \mathbf{d}, \mathrm{e}$ to be more toxic than cis diamine complexes of $1 \mathbf{a - c}$ to the host animals, and in these studies $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}$ complexes of cyclohexanol trans diamines also were most toxic to the recipient mice. The enhanced potency of mono- vs bishydroxylated species cannot easily be explained in terms of relative hydroxyl configuration, but may reflect subtle differences in crys-

[^2]talline structure, thereby influencing drug dissolution, solubility properties, and bioavailability.

Experimental Section

Melting points were determined in open capillaries with a Thomas-Hoover Uni-Melt apparatus and are uncorrected. Infrared spectra were recorded with a Beckman Model 4230 spectrophotometer. Nuclear magnetic resonance spectra were recorded with either a Bruker HX-90E or a $500-\mathrm{MHz}$ spectrometer. TMS $\left(\mathrm{CDCl}_{3}\right)$ was used as internal standard. Chemical shifts are reported on the δ scale with peak multiplicities: s, singlet; d, doublet; t , triplet; q, quartet; m , multiplet; dd, doublet of doublets; dt , doublet of triplets. THF was freshly distilled from sodium/ benzophenone ketyl. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, TN.

Bis(phenylmethyl) ($1 \alpha, 2 \alpha, 4 \beta$)-(4-Hydroxy-1,2-cyclohexanediyl)bis(carbamate) (5a) and Bis(phenylmethyl) ($1 \alpha, 2 \alpha, 4 \alpha$)-(4-Hydroxy-1,2-cyclohexanediyl)bis(carbamate) (5 b). Cis olefin $4(1.5 \mathrm{~g}, 3.95 \mathrm{mmol})$ was dissolved in 50 mL of dry THF under argon and cooled in an ice bath. Diborane (1 M in THF, $12 \mathrm{~mL}, 12 \mathrm{mmol}$) was added dropwise by syringe. After 6 h at $0^{\circ} \mathrm{C}$, the reaction was cooled to $-20^{\circ} \mathrm{C}$ (ice-salt bath). NaOH (12 mL of a 6 N solution) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(8 \mathrm{~mL})$ were added cautiously. The reaction was allowed to warm to room temperature over 3 h . The aqueous layer was saturated with $\mathrm{K}_{2} \mathrm{CO}_{3}$, separated from the organic layer, and extracted with 4 $\times 25 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to afford a thick oil which was purified by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}, 20: 1\right)$ to afford 0.35 g of 5 b and 1.07 g of 5 a for a total yield of 91%. Both compounds were obtained as clear oils which solidified after treatment with $\mathrm{Et}_{2} \mathrm{O} /$ hexane. For 5 b: $\mathrm{mp} 82-86^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}$) $3460(\mathrm{sh}), 3380,3340,1695,1685,1265,1070$, and $1040 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~s}, 10 \mathrm{H}$, aromatic), $6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $5.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.08(\mathrm{~s}, 4 \mathrm{H}$, benzylic), $4.00-4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.66-3.72(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.92\left(\mathrm{~m}, 6 \mathrm{H}\right.$, methylene). Anal. ($\mathrm{C}_{22^{-}}$ $\mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$) C, H, N. For $5 \mathrm{a}: \mathrm{mp} 163-164^{\circ} \mathrm{C}$; IR (KBr) $3460(\mathrm{sh})$, $3320,1725,1700,1675,1270,1245$, and $1015 \mathrm{~cm}^{-1}$; NMR (500 MHz , CDCl_{3}) $\delta 7.34$ (s, 10 H , aromatic), $5.09(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, 2 \mathrm{NH}$ and benzylic), 4.15-4.20 (m, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right), 3.85-3.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and H_{2}), 1.4-2.1 (m, 6 H , methylene). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Synthesis of $\mathbf{5 b}$ by $\mathbf{N a B H}_{4}$ Reduction of Epoxide 8. Epoxide $8^{2}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ was dissolved in 4 mL of t-BuOH. NaBH_{4} ($39 \mathrm{mg}, 1.05 \mathrm{mmol}$) was added, and the reaction was heated to reflux. $\mathrm{MeOH}(0.8 \mathrm{~mL})$ was added in $0.2-\mathrm{mL}$ portions every 15 min for 1 h . After 4 h , the mixture was cooled and concentrated in vacuo. The residue was partitioned between 25 mL of EtOAc and 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and washed with $2 \times 10 \mathrm{~mL}$ of brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford a clear oil which was purified by flash chromatography as described above to afford $72 \mathrm{mg}(72 \%)$ of alcohol 5b.

Bis(phenylmethyl) ($1 \alpha, 2 \beta, 4 \alpha$)-(4-Hydroxy-1,2-cyclohexanediyl)bis(carbamate) (7b) and Bis(phenylmethyl) ($1 \alpha, 2 \beta, 4 \beta$)-(4-Hydroxy-1,2-cyclohexanediyl)bis(carbamate) (7a). Trans olefin $6(1.5 \mathrm{~g}, 3.95 \mathrm{mmol})$ was treated as described for cis-4. Flash chromatography of the mixture $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}\right.$, $25: 1$) afforded 0.52 g of 7 b and 0.71 g of 7 a for a total yield of 78%. For 7b: $\mathrm{mp} 142-143^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3390,3280,1695,1270$, 1120 , and $990 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~s}, 10 \mathrm{H}$, aromatic), $5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}, J=7.6 \mathrm{~Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}, J=$ 7.5 Hz), $5.00-5.12\left(\mathrm{~m}, 4 \mathrm{H}\right.$, benzylic), $4.13-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, 3.84-3.92 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{2}$), $3.40-3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 2.19$ (deceptively simple d, $\left.1 \mathrm{H}, \mathrm{H}_{3 \mathrm{e}}, J=13 \mathrm{~Hz}\right), 1.70-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{5 \mathrm{e}}, \mathrm{H}_{6 \mathrm{e}}\right.$, and H_{68}), 1.53 (deceptively simple $\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{~g}}, J=12 \mathrm{~Hz}$), 1.42 (deceptively simple $\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}, J=12.6 \mathrm{~Hz}\right)$. Anal. ($\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$) C, H, N. For 7a: mp 184-185 ${ }^{\circ}$ C; IR (KBr) $3320,1680,1280,1070$, and $1020 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (s, 10 H , aromatic), $5.00-5.18\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{NH}\right.$ and benzylic), $3.68-3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $3.45-3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.36-3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.3$ (deceptively simple d, $1 \mathrm{H}, \mathrm{H}_{3 \mathrm{e}}, J=10 \mathrm{~Hz}$), 2.07 (deceptively simple dd, 1 H , $\mathrm{H}_{6 e}, J=2$ and 8 Hz), 1.98 (deceptively simple d, $1 \mathrm{H}, \mathrm{H}_{5 \mathrm{e}}, J=$ $9 \mathrm{~Hz}), 1.2-1.4\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{5 \mathrm{G}}, \mathrm{H}_{3 \mathrm{a}}\right.$, and $\mathrm{H}_{6 \mathrm{G}}$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$ C, H,N.

Bis(phenylmethyl) ($1 \alpha, 2 \beta$)-(4-Oxo-1,2-cyclohexanediyl)bis(carbamate) (9). Alcohol mixture 7 a and 7 b ($100 \mathrm{mg}, 0.25$
mmol) was dissolved in 5 mL of $\mathrm{Me}_{2} \mathrm{CO}$ and cooled in an ice bath. Jones reagent (0.3 mL of a 2.5 M solution) was added dropwise. After 2 h at $0^{\circ} \mathrm{C}, i$ - PrOH was added, and the inorganic salts were filtered and washed with $\mathrm{Me}_{2} \mathrm{CO}$. The blue-green filtrate was concentrated in vacuo, and the residue was partitioned between EtOAc (25 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. EtOAc was removed (in vacuo) to afford $87 \mathrm{mg}(87 \%)$ of a white powder (CCl_{4}): mp $135-136^{\circ} \mathrm{C}$; IR (KBr) $3320,1725,1685,1280$, 1240 , and $1020 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~s}, 5 \mathrm{H}$, aromatic), 7.30 (s, 5 H , aromatic), 5.28 (d, $2 \mathrm{H}, \mathrm{NH}, J=6.1 \mathrm{~Hz}$), $5.00-5.10\left(\mathrm{~m}, 4 \mathrm{H}\right.$, benzylic), $3.75-3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and H_{2}), 2.76 (dd, $1 \mathrm{H}, \mathrm{H}_{3 \mathrm{e}}, J=3.8$ and 14.3 Hz), $2.45-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5 \mathrm{e}}\right.$ and $\mathrm{H}_{5 \mathrm{a}}$), 2.34 (deceptively simple $\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{~B}}, J=12.2 \mathrm{~Hz}$), $2.20-2.30$ (deceptively simple d, $1 \mathrm{H}, \mathrm{H}_{6 \mathrm{e}}, J=7.6 \mathrm{~Hz}$), $1.50-1.60(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}_{6 \mathrm{a}}$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
NaBH_{4} and K-Selectride Reduction of Ketone 9 To Yield $7 \mathrm{a}, \mathrm{b}$. For NaBH_{4} reduction, ketone 9 ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in 5 mL of absolute EtOH and cooled to $-20^{\circ} \mathrm{C}$ (dry ice $/ \mathrm{CCl}_{4}$). $\mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.34 \mathrm{mmol}$) was added in three portions over 30 min . After 1 h at $-20^{\circ} \mathrm{C}$, the reaction was concentrated to dryness. The residue was dissolved in 10 mL of EtOAc and washed with $2 \times 5 \mathrm{~mL}$ each of $\mathrm{H}_{2} \mathrm{O}$ and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The mixture was purified by flash chromatography as described above to afford 68 mg of 7 a and 7 mg of $\mathbf{7 b}$ for a total yield of 72%. For K-Selectride reduction, ketone 9 ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in 5 mL of dry THF under argon and cooled to - 78 ${ }^{\circ} \mathrm{C}$. K-Selectride (0.3 mL of a 1 M solution in THF) was added dropwise by syringe. After 30 min at $-78^{\circ} \mathrm{C}$, excess hydride was quenched by addition of $20 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$ saturated with $\mathrm{H}_{2} \mathrm{O}$. The solution was concentrated in vacuo and the residue dissolved in 25 mL of $\mathrm{Et}_{2} \mathrm{O}$ and washed with $2 \times 5 \mathrm{~mL}$ each of $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to an oil which was purified as described above, affording 82 mg of 7 b and 4 mg of 7 a for a total yield of 86%.
(SP-4,2-(1 $\alpha, 2 \alpha, 4 \beta)$)-Dichloro(4-hydroxy-1,2-cyclohexanediamine $-\boldsymbol{N}, \boldsymbol{N}$) platinum ($\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{\Gamma}}-3 \mathbf{a}$). Cyclohexanol $\mathbf{5 a}(300 \mathrm{mg}$, 0.76 mmol) was added to a suspension of 60 mg of $10 \% \mathrm{Pd}-\mathrm{C}$ in 15 mL of MeOH . The Parr bottle was alternatively evacuated (water aspirator) and refilled five times to 20 psi with H_{2} gas. The suspension was shaken at room temperature for 2 h under 20 psi H_{2}. The catalyst was removed by filtration and the filtrate concentrated in vacuo to afford a clear oil. Distilled deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added followed by $\mathrm{K}_{2} \mathrm{PtCl}_{4}(312 \mathrm{mg}, 0.76 \mathrm{mmol})$. The flask was swirled to dissolve the salt, stoppered, covered with foil, and allowed to stand at room temperature for 24 h . The canary yellow precipitate was filtered and washed with $5 \% \mathrm{HCl}$ solution, $\mathrm{Me}_{2} \mathrm{CO}$, and $\mathrm{Et}_{2} \mathrm{O}$, affording $112 \mathrm{mg}(37 \%)$ of a yellow powder. Anal. $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OPtCl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Pt}, \mathrm{Cl}$.
(SP-4,2-(1 $1 \alpha, 2 \alpha, 4 \alpha)$)-Dichloro(4-hydroxy-1,2-cyclohexane-diamine- $\boldsymbol{N}, \boldsymbol{N}$) platinum ($\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{I}}-\mathbf{3 b}$). Cyclohexanol $\mathbf{5 b}$ (125 mg , 0.314 mmol) was treated as described previously. After 24 h the greenish yellow crystals were recrystallized from $\mathrm{H}_{2} \mathrm{O}$ to afford $46 \mathrm{mg}(37 \%)$ of similarly colored crystals of $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{I}}-3 \mathbf{b}$. Anal. $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OPtCl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Pt}, \mathrm{Cl}$.
($\boldsymbol{S P} \boldsymbol{P}$-4,2-($1 \alpha, 2 \beta, 4 \beta$))-Dichloro(4-hydroxy-1,2-cyclohexane-diamine- $\boldsymbol{N}, \boldsymbol{N})$ platinum ($\left.\mathrm{Cl}_{2} \mathrm{Pt}^{[1}-3 \mathrm{c}\right)$. Cyclohexanol $7 \mathrm{a}(100 \mathrm{mg}$, 0.25 mmol) was treated as described previously. The precipitate was collected and recrystallized from $\mathrm{H}_{2} \mathrm{O}$, affording $65 \mathrm{mg}(65 \%)$ of $\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{H}}-3 \mathrm{c}$ as bright yellow needles. Anal. $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OPtCl}_{2}\right.$. $\left.0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Pt}$; Cl: calcd, 17.50; found, 16.98 .
(SP-4,2-(1 $\alpha, 2 \beta, 4 \alpha)$)-Dichloro(4-hydroxy-1,2-cyclohexanediamine $-\boldsymbol{N}, \boldsymbol{N}$) platinum ($\mathrm{Cl}_{2} \mathrm{Pt}^{\mathrm{II}}-3 \mathrm{~d}$). Cyclohexanol $\mathbf{7 b}$ (200 mg , 0.50 mmol) was treated as described previously, affording 99 mg (48%) of $\mathrm{Cl}_{2} \mathrm{Pt}^{11}-3 \mathrm{~d}$ as yellow-green needles. Anal. $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OPtCl}_{2} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Pt}, \mathrm{Cl}$.

X-ray Crystallographic Analysis of Oxirane 8. Crystals of oxirane 8 from $\mathrm{Et}_{2} \mathrm{O}$ are clear and colorless. The data collection crystal was cut from a clump of crystals, and preliminary examination of its diffraction pattern on a Syntex (Nicolet) $P \overline{1}$ diffractometer indicated an orthorhombic crystal system with systematic absences $h 00, h=2 n+1,0 k 0, k=2 n+1$, and $001, l=$ $2 n+1$. The space group is uniquely determined as $P 2_{1} 2_{1} 2_{1}$. The unit cell constants $a=9.278$ (1) $\AA, b=10.391$ (1) \AA, and $c=21.214$ (1) \AA were determined at ambient temperature by the leastsquares fit of the diffractometer setting angles for 25 reflections

Table II. Crystallographic Details for Oxirane 8

formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$		
formula wt	396.45		
space group	$P 2_{1} 2_{1}{ }_{1}$		
a, \AA	9.278 (1)		
b, Å	10.391 (1)		
c, \AA	21.214 (1)		
volume, \AA^{3}	2045		
Z	4		
density (calcd), $\mathrm{g} / \mathrm{cm}^{3}$	1.29		
crystal size	$0.17 \mathrm{~mm} \times 0.31 \mathrm{~mm} \times 0.34 \mathrm{~mm}$		
radiation	Mo $\mathrm{K} \alpha$ with graphite monochromator		
linear abs coeff, cm^{-1}	0.86		
temperature	$19^{\circ} \mathrm{C}$		
2θ limits	4 to 46°		
scan speed	2.0 to $24.0 \mathrm{deg} / \mathrm{min}$ in 2θ		
background time/scan time	0.5		
scan range	$\left(K \alpha_{1}-1.0\right)^{\circ}$ to $\left(K \alpha_{2}+1.0\right)^{\circ}$		
data collected	$+h,+k,+l$		
unique data	1665		
unique data, with $F_{\circ}>$ $0.5 \sigma\left(F_{0}{ }^{2}\right)$	1321		
final number of variables	262		
$R(F)^{\text {a }}$	0.079		
$R_{\text {w }}(F)^{\text {b }}$	0.044		
error in observation of unit weight, e	1.34		
$R\left(\right.$ on F for $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$)	0.043		
$\begin{gathered} { }^{a} R(F)=\sum_{i}\left\\|F_{\mathrm{o}}-F_{\mathrm{c}}\right\\| \\ \left.\sum w\left\|F_{\mathrm{o}}\right\|^{2}\right]^{1 / 2} \\ \text { with } w=1 / \sigma^{2}(\end{gathered}$	$\sum_{\left.F_{0}\right)}\left\|F_{0}\right\| . \quad{ }^{b} R_{\mathrm{w}}(F)=\left[\sum w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} \mid\right.$		

in the 2θ range 16 to 25° with $\mathrm{Mo} \mathrm{K} \alpha$ radiation $(\lambda(K \bar{\alpha})=0.71069$ \AA).

Intensities were measured by the $\theta-2 \theta$ scan technique out to a maximum 2θ value of 46°. The data set was such that only 807 intensities out of a total of 1665 satisfy the condition $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$. Corrections for Lorentz and polarization effects were made, and the data was put onto an absolute scale by means of a Wilson plot. ${ }^{11}$ Six standard reflections were measured after every 100 reflections during data collection and indicated no problem with crystal decomposition.

The structure was solved by the direct methods package miTHRIL, ${ }^{12}$ with all of the atoms, except for one phenyl ring carbon atom, located at this point. The missing atom was found by standard Fourier methods. The sHELX-76 package ${ }^{13}$ was used for all full-matrix least-squares refinements. The hydrogen atoms bonded to carbon atoms were included in the model as fixed contributions in calculated positions: $\mathrm{C}-\mathrm{H}=0.98 \AA$ with $B_{\mathrm{H}}=$ $B_{C e q}+1.0 \AA^{2}$. The two hydrogen atoms bonded to the nitrogen atoms were located on a difference electron density map and also included in the model as fixed contributions. The final refinement cycle resulted in agreement indices of $R=0.079$ and $R_{\mathrm{w}}=0.044$ (based on F) for the 1321 unique intensities with $F_{0}{ }^{2}>0.5 \sigma\left(F_{0}{ }^{2}\right)$ and 262 variables (anisotropic non-hydrogen atoms and hydrogen atoms fixed). The final difference electron density map is fea-
(11) The programs used for data reduction are from the CRYM crystallographic computing package: Duchamp, D. J.; Trus, B. L.; Westphal, B. J. (1964), California Institute of Technology, Pasadena, CA and modified by G. G. Christoph at The Ohio State University, Columbus, OH .
(12) Gilmore, C. J. MITHRIL. A Computer Program for the Automatic Solution of Crystal Structures from X-ray Data; University of Glasgow, Glasgow, Scotland, 1983.
(13) Sheldrick, G. M. SHELX-76. Program for Crystal Structure Determination; University Chemical Laboratory, Cambridge, England, 1976.
tureless, with maximum and minimum peaks of 0.24 and -0.25 e/ \AA^{3}. Scattering factors used were those provided by SHELX-76. ${ }^{14}$ Further crystallographic details appear in Table II. Final positional parameters (Table III), bond lengths (Table IV), bond angles (Table V), deviations from least-squares planes (Table VI), selected torsion angles (Table VII), anisotropic thermal parameters (Table VIII), calculated hydrogen atom positions (Table IX), and observed and calculated structure factor amplitudes (Table X) are provided in the supplementary material.

Figure 1 shows the labeling scheme used for this structure. The amino groups occupy axial and equatorial positions and so are cis with respect to each other and they are also cis with respect to the epoxide ring. This molecule can exist as a pair of conformational enantiomers. Since the space group is $P 2_{1} 2_{1} 2_{1}$, only one of these conformational enantiomers is present in the crystal structure reported here.
The conformation of the cyclohexane ring is best described as a distorted half-chair; atoms $\mathrm{C} 3, \mathrm{C} 2, \mathrm{C} 1$, and C 6 lie approximately in one plane and atoms C 4 and C 5 are disposed on opposite sides of this plane by unequal amounts. This is more accurately described in the listing for some least-squares planes in Table VI (supplementary material). The angle between the epoxide ring and the least-squares plane through atoms $\mathrm{C} 3, \mathrm{C} 2, \mathrm{C} 1$, and C 6 is 77°. The bond lengths within the epoxide ring vary from the expected lengths as summarized by Allen. ${ }^{15}$ This compilation of X-ray studies of structures containing oxirane rings gives an average range for $\mathrm{C}-\mathrm{O}$ bond lengths of $1.444-1.451 \AA$ and an average range for the $\mathrm{C}-\mathrm{C}$ bond length of $1.464-1.468 \AA$. The $\mathrm{C} 2-\mathrm{O} 1$ bond length for this structure is surprisingly short at 1.408 (10) \AA, although it is not significantly different from the C1-O1 bond length at 1.439 (9) \AA. The C1-C2 bond, 1.401 (11) \AA, is also very short. It is interesting to note that the oxygen atom of the epoxide is involved in an intramolecular hydrogen bonding interaction with the axial nitrogen atom, N1. The equatorial nitrogen atom, N 2 , is intermolecularly hydrogen bonded to O 4. Tables IV and V (supplementary material) contain the relevant distances and angles.
The conformations about the nitrogen atoms are very close to trigonal planar. In addition, the chain of atoms between the cyclohexane ring and one of the phenyl rings, $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$, is close to planarity, as is the other chain, composed of atoms $\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 15-\mathrm{O} 5-\mathrm{C} 16$. Torsion angles for these chains are listed in Table VII (supplementary material). The N1-C4 and N2-C5 distances are as expected for an aliphatic amine-carbon bond length.

Acknowledgment. D.P.R. is grateful to the American Foundation of Pharmaceutical Education and the College of Pharmacy, The Ohio State University for fellowship support. Ft NMR $500-\mathrm{MHz}$ spectra were obtained at the OSU Chemical Instrumentation Center with the use of an NT-500 spectrometer funded in part by NIH Grant No. 1-S10-RR011458-01A1. Spectra were recorded by Dr. C. E. Cottrell.

Supplementary Material Available: Tables III-IX giving final positional parameters, bond lengths, bond angles, deviations from least-squares planes, selected torsion angles, anisotropic thermal parameters, and calculated hydrogen atom positions (7 pages); Table X giving observed and calculated structure factor amplitudes (5 pages). Ordering information is given on any current masthead page.
(14) Scattering factors are from International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, p 99.
(15) Allen, F. H. Tetrahedron 1982, 38, 2843-2853.

[^0]: ${ }^{\dagger}$ The Ohio State University, Division of Medicinal Chemistry.
 \# Adria Laboratories.
 ${ }^{8}$ The Ohio State University, Department of Chemistry.

[^1]: (6) Soai, K.; Ookawa, A.; Oyamada, H.; Takase, M. Heterocycles 1982, 19, 1371-1374.
 (7) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958-1965.
 (8) Shaw, K. J.; Luly, J. R.; Rapoport, H. J. Org. Chem. 1985, 50, 4515-4523.
 (9) Rickborn, B.; Lwo, S.-Y. J. Org. Chem. 1965, 30, 2212-2216.

[^2]: (10) Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry. Part B: Reactions and Synthesis; Plenum: New York, 1984; pp 209-212.

